• Sharif EU, Kalisiak J, Lawson KV, Miles DH, Newcomb E, Lindsey EA, Rosen BR, Debien LPP, Chen A, Zhao X, Young SW, Walker NP, Sträter N, Scaletti ER, Jin L, Xu G, Leleti MR, Powers JP.
    Discovery of Potent and Selective Methylenephosphonic Acid CD73 Inhibitors
    J. Med. Chem. 2021, 64(1):845-860. doi: 10.1021/acs.jmedchem.0c01835

  • Jäger E, Murthy S, Schmidt C, Hahn M, Strobel S, Peters A, Stäubert C, Sungur P, Venus T, Geisler M, Radusheva V, Raps S, Rothe K, Scholz R, Jung S, Wagner S, Pierer M, Seifert O, Chang W, Estrela-Lopis I, Raulien N, Krohn K, Sträter N, Hoeppener S, Schöneberg T, Rossol M, Wagner U.
    Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis
    Nat. Commun. 2020, 11(1): 4243. doi: 10.1038/s41467-020-17749-6

    Lawson KV, Kalisiak J, Lindsey EA, Newcomb ET, Leleti MR, Debien L, Rosen BR, Miles DH, Sharif EU, Jeffrey JL, Tan JBL, Chen A, Zhao S, Xu G, Fu L, Jin L, Park TW, Berry W, Moschütz S, Scaletti E, Sträter N, Walker NP, Young SW, Walters MJ, Schindler U, Powers JP.
    Discovery of AB680: A Potent and Selective Inhibitor of CD73
    J. Med. Chem. 2020, 63(20): 11448-11468. doi: 10.1021/acs.jmedchem.0c00525

    S. Hanke, CA. Tindall, J. Pippel, D. Ulbricht, B. Pirotte, M. Reboud-Ravaux, JT. Heiker, N. Sträter
    Structural Studies on the Inhibitory Binding Mode of Aromatic Coumarinic Esters to Human Kallikrein-Related Peptidase 7
    J. Med. Chem. 2020, 63(11): 5723-5733. doi: 10.1021/acs.jmedchem.9b01806

    CA. Tindall, S. Dommel, V. Riedl, D. Ulbricht, S. Hanke, N. Sträter, JT. Heiker
    Membrane Phospholipids and Polyphosphates as Cofactors and Binding Molecules of SERPINA12 (vaspin)
    Molecules 2020, 25(8): 1992. doi: 10.3390/molecules25081992

  • L. Kolano, D. Knappe, D. Volke, N. Sträter, R. Hoffmann
    Ribosomal Target-Binding Sites of Antimicrobial Peptides Api137 and Onc112 Are Conserved among Pathogens Indicating New Lead Structures To Develop Novel Broad-Spectrum Antibiotics
    ChemBioChem 2020, 21(18): 2628-2634. doi: 10.1002/cbic.202000109

    JW. Beatty, EA. Lindsey, R. Thomas-Tran, L. Debien, D. Mandal, JL. Jeffrey, AT. Tran, J. Fournier, SD. Jacob, X. Yan, SL. Drew, E. Ginn, A. Chen, A.T. Pham, S. Zhao, L. Jin, SW. Young, NP. Walker, MR. Leleti, S. Moschütz, N. Sträter, JP. Powers, KV. Lawson.
    Discovery of Potent and Selective Non-Nucleotide Small Molecule Inhibitors of CD73
    J. Med. Chem. 2020, 63(8): 3935-3955. doi: 10.1021/acs.jmedchem.9b01713

  • S. Bhattarai, J. Pippel, E. Scaletti, R. Idris, M. Freundlieb, G. Rolshoven, C. Renn, SY Lee,  A. Abdelrahman, H. Zimmermann, A. El-Tayeb, C.E. Müller, N. Sträter
    2-Substituted α,β-Methylen -ADP Derivatives: Potent Competitive Ecto-5'-nucleotidase (CD73) Inhibitors with Variable Binding Modes
    J. Med Chem. 2020, 63 (6): 2941-2957.
  • S. Bhattarai, J. Pippel, A. Meyer, M. Freundlieb, C. Schmies, A. Abdelrahman et al.      
    X-Ray Co-Crystal Structure Guides the Way to Subnanomolar Competitive Ecto-5'-Nucleotidase (CD73) Inhibitors for Cancer Immunotherapy 
    Advanced Therapeutics 2019, 2 (10), 1900075.
  • M. Zahn, N. Kurteva-Yaneva, J. Schuster, U. Krug, T. Georgi, R. Müller, T. Rohwerder and N.Sträter
    Structures of 2-hydroxyisobutyric acid-CoA ligase reveal determinants of substrate specificity and describe a multi-conformational catalytic cycle
    J. Mol. Biol. 2019, 431(15):2747-2761.
  • C. Döhler, M. Zebisch, D. Krinke, A. Robitzki, N. Sträter
    Crystallization of ectonucleotide phosphodiesterase/pyrophosphatase-3 and orientation of the SMB domains in the full-length ectodomain
    Acta Crystallogr. F Struct. Biol. Commun. 2018, 74: 696-703.
  • C. Döhler, M. Zebisch, N. Sträter
    Crystal structure and substrate binding mode of ectonucleotide phosphodiesterase/pyrophosphatase-3 (NPP3)
    Sci. Rep.  2018, 8: 10874.
  • D. Ulbricht, CA. Tindall, K. Oertwig, S. Hanke, N. Sträter, JT. Heiker
    Kallikrein-related peptidase 14 is the second KLK protease targeted by the serpin vaspin
    Biol. Chem.  2018, 399:1079-1084.
  • K. Oertwig, D. Ulbricht, S. Hanke, J. Pippel, K. Bellmann-Sickert, N. Sträter, JT. Heiker
    Glycosylation of human vaspin (SERPINA12) and its impact on serpin activity, heparin binding and thermal stability
    Biochim. Biophys. Acta  2017, 1865(9):1188-1194.
  • C. Roth, N. Weizenmann, N. Bexten, W. Saenger, W. Zimmermann, T. Maier, N. Sträter
    Amylose recognition and ring-size determination of amylomaltase
    Sci. Adv. 2017, 13;3(1):e1601386 doi: 10.1126/sciadv.1601386
  • D. Ulbricht, K. Oertwig, K. Arnsburg, A. Saalbach, J. Pippel, N. Sträter, JT. Heiker
    Basic Residues of ß-Sheet A Contribute to Heparin Binding and Activation of Vaspin  (Serpin A12)
    J. Biol. Chem. 2017, 292, 994-1004.
  • D. Arac, N. Sträter, E. Seiradake
    Understanding the Structural Basis of Adhesion GPCR Functions
    Handb. Exp. Pharmacol.  2016, 234, 67-82.
  • T.M. Kriegel, K. Kettner, G. Rödel, N. Sträter
    Regulatory Function of Hexokinase 2 in Glucose Signaling in Saccharomyces cerevisiae
    J. Biol. Chem. 2016, 291, 16477.
  • D. Knappe, T. Goldbach, M.P Hatfield, N.Y. Palermo, S. Weinert, N. Sträter, R. Hoffmann,
    S. Lovas
    Proline-rich Antimicrobial Peptides Optimized for Binding to Escheria coli Chaperone DnaK
    Protein Pept. Lett. 2016, 23, 1061-1071.
  • U. Krug, N.S. Alexander, R.A. Stein, A. Keim, H.S. Mchaourab, N. Sträter, J. Meiler
    Characterization of the Domain Orientations of E. coli 5'-Nucleotidase by Fitting an Ensemble of Conformers to DEER Distance Distributions
    Structure 2016, 24, 43-56.
  • J. Pippel, E.B. Küttner, D. Ulbricht, J. Daberger, S. Schultz, J.T. Heiker, N. Sträter
    Crystal structure of cleaved vaspin (serpinA12)
    Biol. Chem. 2016, 397, 111-23
  • D. Ulbricht, J. Pippel, S. Schultz, R. Meier, N. Sträter, J.T. Heiker
    A unique serpin P1' glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin)
    Biochem. J. 2015, 470, 357-367.
  • M. Kloos, A. Brüser, J. Kirchberger, T. Schöneberg, N. Sträter
    Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation 
    Biochem. J. 2015, 469, 421-432.
  • S. Bhattarai, M. Freundlieb, J. Pippel, A. Meyer, A. Abdelrahman, A. Fiene, S.Y. Lee, H. Zimmermann, G.G. Yegutkin, N. Sträter, A. El-Tayeb, C.E. Müller
    α,β-Methylene-ADP (AOPCP) Derivatives and Analogues: Development of Potent and Selective ecto-5'-Nucleotidase (CD73) Inhibitors
    J. Med. Chem. 2015, 58, 6248-6263.
  • N. Kurteva-Yaneva, M. Zahn, M. T. Weichler, R. Starke, H. Harms, R. H. Müller, N. Sträter, T. Rohwerder
    Structural Basis of the Stereospecificity of Bacterial B12-dependent 2-Hydroxyisobutyryl-CoA Mutase
    J. Biol. Chem. 2015, 290, 9727-9737.
  • K. Buettner, T. Kreisig, N. Sträter, T. Zuchner
    Protein surface charge of trypsinogen changes its activation pattern
    BMC Biotechnol. 2014, 14, 109.
  • A. Krizsan, D. Volke, S. Weinert, N. Sträter, D. Knappe, R. Hoffmann
    Insect-Derived Proline-Rich Antimicrobial Peptides Kill Bacteria by Inhibiting Bacterial Protein Translation at the 70 S Ribosome
    Angew Chem Int Ed Engl 2014, 53, 12236-12239.
  • M. Genz, N. Sträter
    Posttranslational Incorporation of Non-canonical Amino Acids in the RNase S System by Semisynthetic Protein Assembly
    Methods Mol. Biol. 2014, 1216, 71-87.
  • M. Kloos, A. Brüser, J. Kirchberger, T. Schöneberg, N. Sträter
    Crystallization and preliminary crystallographic analysis of human muscle phosphofructokinase, the main regulator of glycolysis
    Acta Cryst. F 2014, 70, 578-582.
  • G. Schwan, G. Barbar Asskar, N. Höfgen, L. Kubicova, U. Funke, U. Egerland, M. Zahn, K. Nieber, M. Scheunemann, N. Sträter, P. Brust, D. Briel
    Fluorine-Containing 6,7-Dialkoxybiaryl-Based Inhibitors for Phosphodiesterase 10A: Synthesis and in vitro Evaluation of Inhibitory Potency, Selectivity, and Metabolism
    ChemMedChem 2014, 9, 1476-1487.
  • C. Roth, R. Wei, T. Oeser, J. Then, C. Föllner, W. Zimmermann, N. Sträter
    Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca
    Appl. Microbiol. Biotechnol. 2014, 98, 7815-7823.
  • M. Zebisch, M. Krauss, P. Schäfer, N. Sträter
    Structures of Legionella pneumophila NTPDase1 in complex with polyoxometallates
    Acta Cryst. D 2014, 70, 1147-1154.
  • M. Genz, V. Köhler, M. Krauss, D. Singer, R. Hoffmann, T. Ward, N. Sträter
    An Artificial Imine Reductase based on the Ribonuclease S Scaffold
    ChemCatChem 2014, 6, 736-740.
  • M. Zebisch, Y. Baqi, P. Schäfer, C. E. Müller, N. Sträter
    Crystal structure of NTPDase2 in complex with the sulfoanthraquinone inhibitor PSB-071
    J. Struct. Biol. 2014, 185, 336-341.
  • M. Zahn, B. Kieslich, N. Berthold, D. Knappe, R. Hoffmann, N. Sträter
    Structural identification of DnaK binding sites within bovine and sheep bactenecin Bac7
    Prot. Pept. Lett. 2014, 21, 407-412.
  • M. Genz, D. Singer, E. Hey-Hawkins, R. Hoffmann, N. Sträter
    Crystal Structure of Apo- and Metalated Thiolate containing RNase S as Structural Basis for the Design of Artificial Metalloenzymes by Peptide-Protein Complementation
    Z. Anorg. Allg. Chem. 2013, 639, 2395-2400.
  • U. Krug, R. Totzauer, M. Zebisch, N. Sträter
    The ATP/ADP Substrate Specificity Switch between Toxoplasma gondii NTPDase1 and NTPDase3 is Caused by an Altered Mode of Binding of the Substrate Base
    ChemBioChem 2013, 14, 2292-2300.
  • M. Zebisch, M. Krauss, P. Schäfer, P.Lauble, N. Sträter
    Crystallographic Snapshots along the Reaction Pathway of Nucleoside Triphosphate Diphosphohydrolases
    Structure 2013, 21, 1460-1475.
  • J. Breitfeld, J. T. Heiker, Y. Böttcher, D. Schleinitz, A. Tönjes, K. Weidle, K. Krause, E. B. Küttner, M. Scholz, W. Kiess, N. Sträter, A. G. Beck-Sickinger, M. Stumvoll, A. Körner, M. Blüher, P. Kovacs
    Analysis of a rare functional truncating mutation rs61757459 in vaspin (SERPINA12) on circulating vaspin levels
    J. Mol. Med. 2013, 91, 1285-1292.
  • T. Schöneberg, M. Kloos, A. Brüser, J. Kirchberger, N. Sträter
    Structure and allosteric regulation of eukaryotic 6-phosphofructokinases
    Biological Chemistry 2013, 394, 977-993.
  • K. Kettner, E. B. Küttner, A. Otto, H. Lilie, R. P. Golbik, N. Sträter, T. M. Kriegel
    In vivo phosphorylation and in vitro autophosphorylation-inactivation of Kluyveromyces lactis hexokinase KlHxk1
    Biochem. Biophys. Res. Comm. 2013, 435, 313-318.
  • M. Zahn, N. Berthold, B. Kieslich, D. Knappe, R. Hoffmann, N. Sträter
    Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK
    J. Mol. Biol. 2013, 425, 2463-2479.
  • U. Krug, R. Totzauer, N. Sträter
    The crystal structure of Toxoplasma gondii nucleoside triphosphate diphosphohydrolase 1 represents a conformational intermediate in the reductive activation mechanism of the tetrameric enzyme
    Proteins 2013, 81, 1271-1276.
  • M. Zebisch, P. Schäfer, P. Lauble, N. Sträter
    New crystal forms of NTPDase1 from the bacterium Legionella pneumophila
    Acta Cryst. F 2013, 69, 259-262.
  • C. Roth, A. D. Janosch, S. R. Kaschabek, M. Schlömann, N. Sträter
    Crystal structure and catalytic mechanism of chloromuconolactone dehalogenase ClcF from Rhodococcus opacus 1CP
    Mol. Microbiol. 2013, 88, 254-267.
  • S. O. Dahms, M. Kuester, C. Streb, C. Roth, N. Sträter, M. E. Than
    Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement
    Acta Cryst. D 2013, 69, 284-297.
  • J. T. Heiker, N. Klöting, P. Kovacs, E. B. Küttner, N. Sträter, S. Schultz, M. Kern, M. Stumvoll, M. Blüher, A. G. Beck-Sickinger
    Vaspin inhibits kallikrein 7 by serpin mechanism
    Cell. Mol. Life Sci. 2013, 70, 2569-2583.
  • U. Krug, R. Patzschke, M. Zebisch, J. Balbach, N. Sträter
    Contribution of the two domains of E. coli 5'-nucleotidase to substrate specificity and catalysis
    FEBS Lett. 2013, 587, 460-466.
  • K. M. Knapp, M. Zebisch, N. Sträter
    Crystallization and preliminary X-ray analysis of the open form of human ecto-5'-nucleotidase (CD73)
    Acta Cryst. Sect. F 2012, 68, 1545-1549.
  • K. Knapp, M. Zebisch, J. Pippel, A. El-Tayeb, C. E. Müller, N. Sträter
    Crystal Structure of the Human Ecto-5'-Nucleotidase (CD73): Insights into the Regulation of Purinergic Signaling
    Structure 2012, 20, 2161-2173.
  • J. A. Gröning, C. Roth, S. R. Kaschabek, N. Sträter, M. Schlömann
    Recombinant expression of a unique chloromuconolactone dehalogenase ClcF from Rhodococcus opacus 1CP and identification of catalytically relevant residues by mutational analysis.
    Arch. Biochem. Biophys. 2012, 526, 69-77.
  • C. Roth, S. R. Kaschabek, J. A. Gröning, T. Handrek, M. Schlömann, N. Sträter
    Crystallization and preliminary characterization of chloromuconolactone dehalogenase from Rhodococcus opacus 1CP.
    Acta Cryst. Sect. F 2012, 68, 591-595.
  • P. Czihal, D. Knappe, S. Fritsche, M. Zahn, N. Berthold, S. Piantavigna, U. Müller, S. van Dorpe, N. Herth, A. Binas, G. Köhler, B. de Spiegeleer, L. L. Martin, O. Nolte, N. Sträter, G. Alber, R. Hoffmann
    Api88 is a novel antibacterial designer peptide to treat systemic infections with multidrug-resistant gram-negative pathogens.
    ACS Chem. Biol. 2012, 7, 1281-1291.
  • H. Zimmermann, M. Zebisch, N. Sträter 
    Cellular function and molecular structure of ecto-nucleotidases.
    Purinergic Signal. 2012, 8, 437-502.
  • P. Simeonov, M. Zahn, N. Sträter, T. Zuchner
    Crystal structure of a supercharged variant of the human enteropeptidase light chain.
    Proteins 2012, 80, 1907-1910.
  • A. Brüser, J. Kirchberger, M. Kloos, N. Sträter, T. Schöneberg
    Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase.
    J. Biol. Chem. 2012, 287, 17546-17553.
  • U. Krug, M. Zebisch, M. Krauss, N. Sträter
    Structural insight into activation mechanism of Toxoplasma gondii nucleoside triphosphate diphosphohydrolase by disulfide reduction
    J. Biol. Chem. 2012, 287, 3051-3066.
  • M. Zebisch, M. Krauss, P. Schäfer, N. Sträter
    Crystallographic evidence for a domain motion in rat nucleoside triphosphate diphosphohydrolase (NTPDase)1
    J. Mol. Biol. 2012, 415, 288-306.
  • D. Knappe, M. Zahn, U. Sauer, G. Schiffer, N. Sträter, R. Hoffmann
    Rational design of oncocin derivatives with superior protease stabilities and antibacterial activities based on the high-resolution structures of the oncocin-DnaK complex
    Chembiochem. 2011, 12, 874-876.
  • P. Simeonov, R. Berger-Hoffmann, R. Hoffmann, N. Sträter, T. Zuchner
    Surface supercharged human enteropeptidase light chain shows improved solubility and refolding yield.
    Protein Eng. Des. Sel.  2011, 24, 261-268.
  • N. Sträter, S. Marek, E. B. Kuettner, M. Kloos, A. Keim, A. Brüser, J. Kirchberger, T. Schöneberg
    Molecular architecture and structural basis of allosteric regulation of eukaryotic phosphofructokinases.
    FASEB J. 2011, 25, 89-95.
  • E. B. Kuettner, K. Kettner, A. Keim, D. I. Svergun, D. Volke, S. Singer, R. Hoffmann, E. C. Müller, A. Otto, T. M. Kriegel, N. Sträter
    Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization
    J. Biol. Chem. 2010, 285, 41019-41033.
  • R. Schmiedel, E. B. Kuettner, A. Keim, N. Sträter, T. Greiner-Stöffele
    Structure and function of the abasic site specificity pocket of an AP endonuclease from Archaeoglobus fulgidus
    DNA Repair  2009, 8, 219-231.
  • M. Q. Müller, C. Roth, N. Sträter, A. Sinz
    Expression and purification of the ligand-binding domain of peroxisome proliferator-activated receptor alpha (PPARα)
    Protein Expression and Purification 2008, 62, 185-189.
  • M. Zebisch, N. Sträter
    Structural basis of signal conversion and inactivation by NTPDase2 in purinergic signalling
    Proc. Natl. Acad. Sci. USA 2008, 105, 6882-6887.
  • E. B. Kuettner, A. Keim, M. Kirchner, S. Rosmus, N. Sträter
    Active site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bordetella bronchisepticus
    J. Mol. Biol. 2008, 377, 386-394.
  • K. S. Paithankar, C. Feller, E. B. Kuettner, A. Keim, M. Grunow, N. Sträter
    Cosubstrate-induced dynamics of D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida
    FEBS J. 2007, 274, 5767-5779.
  • M. Zebisch, N. Sträter
    Characterisation of rat NTPDase1, -2 and -3 ectodomains refolded from bacterial inclusion bodies
    Biochemistry 2007, 46, 11945-11956.
  • E. B. Kuettner, T. M. Kriegel, A. Keim, M. Naumann, N. Sträter
    Crystallization and preliminary X-ray diffraction studies of hexokinase KlHxk1 from Kluyveromyces lactis
    Acta Cryst. Sect. F 2007, 63, 430-433.
  • E. B. Kuettner, S. Pfeifer, A. Keim, T. Greiner-Stöffele, N. Sträter
    Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases
    Acta Cryst. Sect. F 2006, 62, 1290-1293.
  • N. Sträter
    Ecto-5'-Nucleotidase: Structure Function Relationships
    Purinergic Signalling 2006, 2, 343-350.
  • N. Sträter, B. Jasper, M. Scholte, B. Krebs, A. P. Duff, D. B. Langley, R. Han, B. A. Averill, H. C. Freeman, J. M. Guss
    Crystal structures of recombinant human purple acid phosphatase with and without an inhibitory conformation of the repression loop
    J. Mol. Biol. 2005, 351, 233-246.
  • T. Maier, I. Przylas, N. Sträter, P. Herdewijn, W. Saenger
    Reinforced HNA backbone hydration in the crystal structure of a decameric HNA/RNA hybrid
    J. Am. Chem. Soc. 2005, 127, 2937-2943.
  • R. Schultz-Heienbrok, T. Maier, N. Sträter
    A Large Hinge Bending Domain Rotation is Required for the Catalytic Function of E. coli 5'-Nucleotidase
    Biochemistry 2005, 44, 2244-2252.
  • N. Sträter and W. N. Lipscomb
    Leucyl aminopeptidase (animal)
    in Handbook of proteolytic enzymes, 2nd ed., pp. 896-901, Ed. A. J. Barrett, N. D. Rawlings, J. F. Woessner, Elsevier, New York, 2004.
  • R. Schultz-Heienbrok, T. Maier, N. Sträter
    Trapping a 96° domain rotation in two distinct conformations by engineered disulfide bridges
    Protein Science 2004, 13, 1811-1822.
  • N. Sträter, T. Maier
    Proteinkristallographie im Zeitalter der Strukturgenomik (Trendbericht Biochemie und Molekularbiologie 2003)
    Nachr. Chem. 2004, 52, 292-297.
  • N. Sträter, W. N. Lipscomb
    Leucine aminopeptidase
    in Handbook of Metalloproteins Vol. 3, pp. 199-207, Eds. A. Messerschmidt, W. Bode, M. Cygler, Wiley, Chichester, 2004.
  • N. Sträter
    5'-Nucleotidase
    in Handbook of Metalloproteins Vol. 3, pp. 62-70, Eds. A. Messerschmidt, W. Bode, M. Cygler, Wiley, Chichester, 2004.
  • R. Czaja, M. Struhalla, K. Hoschler, W. Saenger, N. Sträter, U. Hahn
    RNase T1 variant RV cleaves single-stranded RNA after purines due to specific recognition by the Asn46 side chain amide
    Biochemistry 2004, 43, 2854-2862.
  • H. Xu, N. Sträter, W. Schröder, C. Bottcher, K. Ludwig, W. Saenger
    Structure of DNA helicase RepA in complex with sulfate at 1.95 A resolution implicates structural changes to an 'open' form
    Acta Crystallogr Sect. D 2003, 59, 815-822.
  • J.A. Lodge, T. Maier, W. Liebl, V. Hoffmann and N. Sträter
    Crystal structure of Thermotoga maritima alpha-glucosidase AglA defines a new clan of NAD+-dependent glycosidases
    J. Biol. Chem. 2003, 278, 19151-19158.
  • T. Maier, N. Sträter, C. Schuette, R. Klingenstein, K. Sandhoff, W. Saenger
    The X-ray crystal structure of human b-hexosaminidase B provides new insights into Sandhoff disease
    J. Mol. Biol. 2003, 328, 669-681.
  • A. Meinhart, J.C. Alonso, N. Sträter and W. Saenger
    Crystal structure of the plasmid maintenance system e/z : Functional mechanism of toxin z and inactivation by e2/z2 complex formation
    Proc Natl Acad Sci U S A 2003,100,1661-1666.
  • C. Raasch, M. Armbrecht, W. Streit,  B. Höcker, N. Sträter and W. Liebl
    Identification of residues important for NAD+ binding by the Thermotoga maritima a glucosidase AglA, a member of the glycoside hydrolase family 4
    FEBS Letters 2002, 517, 267-271.
  • N. Sträter, I. Przylas, W. Saenger, Y. Terada, K. Fuji and T. Takaha
    Structural basis of the synthesis of large cycloamyloses by amylomaltase
    Biologia Bratislava 2002, 57, 93-99.
  • T. Knöfel and N. Sträter
    Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures
    J. Mol. Biol. 2001, 309, 239-254.
  • A. Meinhart, C. Alings, N. Sträter, A. G. Camacho, J. C. Alonso and W. Saenger
    Crystallization and preliminary X-ray diffraction studies of the ez addiction system encoded by Streptococcus pyogenes plasmid pSM19035
    Acta Cryst. D 2001, 57, 745-747.
  • T. Knöfel and N. Sträter
    E. coli 5'-nucleotidase undergoes a hinge-bending domain rotation resembling a ball-and-socket motion
    J. Mol. Biol. 2001, 309, 255-266.
  • I. Przylas, Y. Terada, K. Fujii, T. Takaha, W. Saenger and N. Sträter
    X-ray structure of acarbose bound to amylomaltase from Thermus aquaticus. Implications for the synthesis of large cycloamyloses
    Eur. J. Biochem. 2000, 267, 6903-6913.
  • I. Przylas, K. Tomoo, Y. Terada, T. Takaha, S. Okada, W. Saenger and N. Sträter
    Crystal structure of amylomaltase from Thermus aquaticus, a glycosyltransferase catalyzing the production of large cyclic glucans
    J. Mol. Biol. 2000, 296, 873-886.
  • N. Sträter, D. J. Sherratt and S. D. Colloms
    X-ray structure of aminopeptidase A from E. coli and a model for the nucleoprotein complex in Xer site-specific recombination
    EMBO J. 1999, 18, 4513-4522.
  • T. Knöfel and N. Sträter
    X-ray structure of the Escherichia coli periplasmic 5'-nucleotidase containing a dimetal catalytic site
    Nature Struct. Biol. 1999, 6, 448-453.
  • N. Sträter, L. Sun, E. R. Kantrowitz and W. N. Lipscomb
    A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase
    Proc. Natl. Acad. Sci. USA 1999, 96, 11151-11155.
  • W. N. Lipscomb and N. Sträter
    Yeast chorismate mutase and other allosteric enzymes
    Pure & Appl. Chem. 1998, 70, 527-531.
  • N. Sträter and W. N. Lipscomb
    Leucyl aminopeptidase (animal and plant)
    in Handbook of proteolytic enzymes, pp. 1384-1389, Ed. A. J. Barrett, N. D. Rawlings, J. F. Woessner, Academic Press, New York, 1998.
  • N. Sträter, G. Schnappauf, G. H. Braus and W. N. Lipscomb
    Mechanisms of catalysis and allosteric regulation of yeast chorismate mutase by crystal structures
    Structure 1997, 5, 1437-1452.
  • G. Schnappauf, N. Sträter, W. N. Lipscomb and G. H. Braus
    A glutamate residue in the catalytic center of the yeast chorismate mutase restricts enzyme activity to acidic conditions
    Proc. Natl. Acad. Sci. USA 1997, 94, 8491-8496.
  • W. N. Lipscomb and N. Sträter
    Recent advances in zinc enzymology
    Chem. Rev. 1996, 96, 2375-2433.
  • N. Sträter, W. N. Lipscomb, T. Klabunde and B. Krebs
    Two-metal ion catalysis in enzymatic acyl- and phosphoryl-transfer reactions
    Angew. Chem. Int. Ed. Engl. 1996, 35, 2024-2055.
  • T. Klabunde, N. Sträter, R. Fröhlich, H. Witzel and B. Krebs
    Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures
    J. Mol. Biol. 1996, 259, 737-748.
  • N. Sträter, K. Håkansson, G. Schnappauf, G. Braus and W. N. Lipscomb
    Crystal structure of the T state of allosteric yeast chorismate mutase and comparison with the R state
    Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 3330-3334.
  • N. Sträter and W. N. Lipscomb
    Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography
    Biochemistry 1995, 34, 14792-14800.
  • N. Sträter and W. N. Lipscomb
    Transition state analogue L-leucinephosphonic acid bound to bovine lens leucine aminopeptidase: X-ray structure at 1.65 Å resolution in a new crystal form
    Biochemistry 1995, 34, 9200-9210.
  • N. Sträter and W. N. Lipscomb
    Two-metal ion mechanism of leucine aminopeptidase. Binding of gem-diolate transition state analogues
    J. Inorg. Biochem. 1995, 59, 294.
  • T. Klabunde, N. Sträter, B. Krebs and H. Witzel
    Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid phosphatases
    FEBS Lett. 1995, 367, 56-60.
  • N. Sträter, T. Klabunde, P. Tucker, H. Witzel and B. Krebs
    Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site
    Science 1995, 268, 1489-1492.
  • B. Krebs and N. Sträter
    Highlights: X-ray structure analysis of methane monooxygenase: an important step toward understanding the oxidation of methane in biological systems
    Angew. Chem. Int. Ed. Engl. 1994, 33, 841-843.
  • R. W. Berg, S. Boghosian, N. J. Bjerrum, R. Fehrmann, B. Krebs, N. Sträter, O. S. Mortensen and G. N. Papatheodorou
    Crystal structure and spectroscopic characterization of CsV(SO4)2. evidence for an electronic raman transition
    Inorg. Chem. 1993, 32, 4714-4720.
  • N. Sträter, R. Fröhlich, A. Schiemann, B. Krebs, M. Körner, H. Suerbaum and H. Witzel
    Crystallization and preliminary crystallographic data of purple acid phosphatase from red kidney bean
    J. Mol. Biol. 1992, 224, 511-513.
  • R. Aumann, H. Heinen, P. Hinterding, N. Sträter and B. Krebs
    1-Metalla-1,3,5-triene und 1-Metalla-1,3-dien-5-ine von Chrom und Wolfram, durch Insertion von Alkinen in M=C- bzw. C=C-Bindungen von 1-Metalla-1,3-dienen bzw. 1-Metalla-1-en-2-inen
    Chem. Ber. 1991, 124, 1229-1236.

Das könnte Sie auch interessieren

Unsere Forschungs-gebiete

mehr erfahren

Unsere Forschungs-projekte

mehr erfahren

Forschung am BBZ

mehr erfahren